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We have reported the synthesis of woxepin oxide1 and of two substituted 

derivatives. 2a,b The generation of a specifically labelled dideuterated deriva- 

tive2a has revealed an ambient temperature, degenerate Cope rearrangement of the 

parent compound, while a substituted derivative constrained to exist in a 

transoid conformation 
2b 

does not undergo facile rearrangement. Herein we report 

the generation of 4,5-dimethyl-c-oxepin oxide (4) and its Cope rearrangement - 

to 2,7-dimethyl-c-oxepin oxide (I) (Scheme). 

4,5-Dimethyl oxepin (Lj3and its valence tautomer 2 serve as the starting 

point for the production of the --oxepin oxides 2 and 2. Benzene oxide 2 is - 

converted via its Diels-Alder adduct 4,5 with bis(trichloroethyl)azodicarboxylate 

(yield, 79%) and an adduct diepoxide 4,6 (yield for epoxidation of adduct by p- 

nitroperoxybenzoic acid, 79%) to the azo 

ide, 81%). Ambient temperature nitrogen 

solution, monitored by 'H nmr, shows the 

and the quantitative ring contraction of 

at.34.7 f 0.5O in CDc13, k = 2.21 f 0.05 

diepoxide 27 (yield from adduct diepox- 

extrusion from 2 in CDC13 (Al203 treated) 

transient production of oxepin oxide 2 

2 to aldehyde z8 (rate of N2 extrusion 

x 10 
-4 set-l) 9,lO . In d5 pyridine 

containing KOH the extrusion gives unrearranged 2. 

The 62parent generation of 2 directly from azo diepoxide 3 IJ. is in contra- 

diction to the preferred geometry for small ring participation in the retro 

homo-Dir.ls-.*,'_der reaction. Precedent2a indicates that nitrogen extrusion 

from 1 should occur with participation of the epoxide anti-fused to the azo 

bridge,i.e., with direct generation of 4. Fortunately, the rapid, acid catalyzed 

rearrangement of z-oxepin oxides to 4-substituted pyrans 
1 

offers an ideal 
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method for the trapping of an oxepin oxide as it is generated. Thus, the 

extrusion of nitrogen from 2 in the presence of 0.2 mole % MeS03H gives I-methyl 

4-acetylpyran (c)l2 as the only observable product (1H nmr; - rate for nitrogen 

extrusion at 34.7 f 0.5' in CDC13 containing MeS03H, k = 2.06 f 0.05 x 10m4 

set-I) I3 . The rates for nitrogen extrusion from 3, in the presence and in the 

absence of trace acid, are the same, 14 strongly suggesting that 6 and 5 are - - 

produced via the same rate determining step, i.e., kl (Scheme ). The apparent 

production of 5 directly from 3 is attributed to two factors: - - (1) k2 is larger 

than rate determining kl, and (2) the equilibrium 4-5 (K -- eq 
=k2/k3 ) favors 

(>95%) 2. 
11 

The equilibrium 4=5 favors the product with more substituted - - 

double bonds and shifts away from the tetrasubstituted epoxide. The same 

factors drive 1,2_dimethylbenzene oxide toward the predominant valence tautomer, 

7-dimethyloxepin. 
3,15 

Scheme 
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Satisfactory combustion analysis was obtained for this compound. 

Data for adduct: m.p. 112.5-113°; 
1 
H nmr (CDC13) 6 (Me4Si) 1.84(s, 6H); 

3.60(br m, 2H); 4.82(br s, 4H); 5.11(br d, 2H); ir (KBr) 1760, 1710 cm-l. 

Data for adduct diepoxide: m.p. 200-201'; 'H nmr (CDC13) 6 (Me4Si) 1.38 

(d, 6H); 3.70(m, 2H); 4.80(m, 6H); ir (KBr) 1768, 1750 cm-l. 

Data for 3: - iH nmr (CDC13) 6 (Me4Si) 1.29(s, 6H); 3.34(m, 2H); 5.65(m, 2H); 

ir (KBr) 2995, 2970, 1529, 1200 cm-1 ; exact mass for parent minus N2, 

calculated, 138.068; found, 138.070. 

Data for 7: 
1 

- H nmr (CDC13) 6 (Me4Si) 1.87(d, J 2 1 Hz, 6H); 3.50(m, 2H); 

4.58(d, 2H); 9.47(d, 1H); ir (CDC13) 1726 cm-l; exact mass of pnitrophenyl- 

hydrazone, calculated, 273.111; found, 273.113. 

Measured by decrease of azo diepoxide (1) 1 H nmr absorptions at 6 (Me4Si) 

5.65 and 1.29; rate calculated from 30 spectral observations over -3t l/2; 

error is at the 95% confidence limit. 
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10. AZO diepoxide 1 extrudes N2 at a rate slower than the parent azo compound, 2a 

k34.7° 
talc. 

= 2.01 f 0.04 x 10-3 set -1. 

11. 1 H nmr absorptions attributable to a small concentration of 4 are seen early - 

in the N2 extrusion in d5 pyridine; these absorptions are absent from the 

final spectrum of 5. 

12. Data for 6: 1 
- H nmr (CDC13) 6 (Me4Si) 1.25(s, 3H); 2.27(s, 3H); 4.75 (AA'XX' 

half spectrum, 2H); 6.42(AA'XX' half spectrum, 2H); ir (CDC13) 1706 cm -1; 

exact mass of p-nitrophenylhydrazone, calculated, 273.111; found, 273.110. 

13. Measured as in footnote 9 from 29 spectral observations. 

14. The small difference in rates is within the experimental error imposed by 

temperature variation between kinetic runs. 

15. See also our accompanying paper (following pages). 
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